Posts by Tag

3dgs

Back to top ↑

3d gaussian splatting

Back to top ↑

연구

Back to top ↑

3D CV

Back to top ↑

SuGaR

Back to top ↑

Registration

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

[Registration] Homographic Adaptation

less than 1 minute read

Homographic adaptation은 다양한 호모그래피 변환을 적용한 이미지들에서 관심점을 검출하고 이를 원본 이미지로 역변환하여 pseudo ground truth를 생성하는 자기 지도 학습 기법입니다.

[Registration] Edge, Corner 정의

less than 1 minute read

이미지에서 일반적으로 가장 중요하고 구분하기 쉬운 특징점들은 코너와 엣지입니다.

Back to top ↑

정합

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

[Registration] Homographic Adaptation

less than 1 minute read

Homographic adaptation은 다양한 호모그래피 변환을 적용한 이미지들에서 관심점을 검출하고 이를 원본 이미지로 역변환하여 pseudo ground truth를 생성하는 자기 지도 학습 기법입니다.

[Registration] Edge, Corner 정의

less than 1 minute read

이미지에서 일반적으로 가장 중요하고 구분하기 쉬운 특징점들은 코너와 엣지입니다.

Back to top ↑

implementation details

Back to top ↑

Multiple View Geometry

Back to top ↑

BLENDER

Back to top ↑

블렌더

Back to top ↑

Mesh

Back to top ↑

메시

Back to top ↑

COLMAP

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

Back to top ↑

NeRF

Back to top ↑

git

[Git] pip install -r requirements.txt

1 minute read

requirements.txt를 설치할 때, 미리 설치한 torch가 uninstall되버리고 다른 버전의 torch로 설치되는 문제 해결법

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

github

[Git] pip install -r requirements.txt

1 minute read

requirements.txt를 설치할 때, 미리 설치한 torch가 uninstall되버리고 다른 버전의 torch로 설치되는 문제 해결법

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

cuda programming

Back to top ↑

cuda

Back to top ↑

c++

Back to top ↑

Computer Vision

Back to top ↑

cpp

Back to top ↑

cpp bridge

Back to top ↑

c++ bridge

Back to top ↑

forward pass

Back to top ↑

backward pass

Back to top ↑

c++/cuda

Back to top ↑

cuda extension

Back to top ↑

메디컬연구

[MR 연구] RAKI

7 minute read

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Back to top ↑

normal map

Back to top ↑

point cloud

Back to top ↑

submodules

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

superpoints

[Registration] Homographic Adaptation

less than 1 minute read

Homographic adaptation은 다양한 호모그래피 변환을 적용한 이미지들에서 관심점을 검출하고 이를 원본 이미지로 역변환하여 pseudo ground truth를 생성하는 자기 지도 학습 기법입니다.

Back to top ↑

MR Reconstruction

[MR 연구] RAKI

7 minute read

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Back to top ↑

depth map

Back to top ↑

triangle

Back to top ↑

Mesh extraction

Back to top ↑

Rendering

Back to top ↑

렌더링

Back to top ↑

local feature descriptor

Back to top ↑

SIFT

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

Back to top ↑

w2c

Back to top ↑

3D mesh

Back to top ↑

diff-gaussian-rasterization

Back to top ↑

spherical harmonics

Back to top ↑

poisson reconstruction

Back to top ↑

surface normal

Back to top ↑

Phong Shading

Back to top ↑

pytorch3d

Back to top ↑

open3d

Back to top ↑

o3d

Back to top ↑

docker

Back to top ↑

modules

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

.gitmodules

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

commit hash

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

heads/main

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

특정 커밋

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

커밋 해시

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

서브모듈

[Git] Submodule installation

1 minute read

GitHub에서 메인 레포지토리의 서브모듈을 특정 커밋(커밋 해시)에 맞게 설치하는 법을 알아봅시다.

Back to top ↑

Structure from Motion

Back to top ↑

SfM

Back to top ↑

github repository

Back to top ↑

SuperGlue

Back to top ↑

keypoint

[Registration] Homographic Adaptation

less than 1 minute read

Homographic adaptation은 다양한 호모그래피 변환을 적용한 이미지들에서 관심점을 검출하고 이를 원본 이미지로 역변환하여 pseudo ground truth를 생성하는 자기 지도 학습 기법입니다.

Back to top ↑

descriptors

[Registration] Homographic Adaptation

less than 1 minute read

Homographic adaptation은 다양한 호모그래피 변환을 적용한 이미지들에서 관심점을 검출하고 이를 원본 이미지로 역변환하여 pseudo ground truth를 생성하는 자기 지도 학습 기법입니다.

Back to top ↑

Epipolar Geometry

Back to top ↑

AI

Back to top ↑

Camera Extrinsics

Back to top ↑

Poses

Back to top ↑

c2w

Back to top ↑

coordinate system

Back to top ↑

density

Back to top ↑

3D Gaussian Splatting

Back to top ↑

normals

Back to top ↑

scene extent

Back to top ↑

pruning

Back to top ↑

learning rate

Back to top ↑

spatial_lr_scale

Back to top ↑

mesh

Back to top ↑

uv map

Back to top ↑

Shader

Back to top ↑

Shading

Back to top ↑

tangent space

Back to top ↑

world space

Back to top ↑

coarse mesh

Back to top ↑

refined mesh

Back to top ↑

Rasterization

Back to top ↑

레스터화

Back to top ↑

AmbientLights

Back to top ↑

RasterizationSettings

Back to top ↑

faces_per_pixel

Back to top ↑

MeshRenderer

Back to top ↑

MeshRasterizer

Back to top ↑

SoftPhongShader

Back to top ↑

BlendParams

Back to top ↑

TriangleMesh

Back to top ↑

read_triangle_mesh

Back to top ↑

knn

Back to top ↑

3D CV20200

Back to top ↑

inverse depth map

Back to top ↑

SURF

Back to top ↑

SuperPoint

Back to top ↑

GaussReg

Back to top ↑

homographic adatation

[Registration] Homographic Adaptation

less than 1 minute read

Homographic adaptation은 다양한 호모그래피 변환을 적용한 이미지들에서 관심점을 검출하고 이를 원본 이미지로 역변환하여 pseudo ground truth를 생성하는 자기 지도 학습 기법입니다.

Back to top ↑

surgical scene reconstruction

Back to top ↑

Geometry

Back to top ↑

SIGGRAPH

Back to top ↑

3DGS

Back to top ↑

R|t

Back to top ↑

world to camera

Back to top ↑

camera to world

Back to top ↑

fastMRI

Back to top ↑

skm-tea

Back to top ↑

camera calibration

Back to top ↑

Lie Algebra

Back to top ↑

Lie Group

Back to top ↑

se3

Back to top ↑

SE3

Back to top ↑

so3

Back to top ↑

SO3

Back to top ↑

NeRF custom dataset

Back to top ↑

optical flow

Back to top ↑

background color

Back to top ↑

near far

Back to top ↑

z_far z_near

Back to top ↑

prune

Back to top ↑

lr

Back to top ↑

NDC/view space

Back to top ↑

coorindate systems

Back to top ↑

rasterization

Back to top ↑

flat gaussian

Back to top ↑

gaussians

Back to top ↑

custom data for 3dgs

Back to top ↑

capture images or videos

Back to top ↑

poisson surface reconstruction

Back to top ↑

animation

Back to top ↑

blender animation

Back to top ↑

uv unwrapping

Back to top ↑

depth

Back to top ↑

Unity

Back to top ↑

유니티

Back to top ↑

normal mapping

Back to top ↑

tangent vector

Back to top ↑

bitangent vector

Back to top ↑

object space

Back to top ↑

face normal

Back to top ↑

pbr (physically based rendering)

Back to top ↑

bake

Back to top ↑

baking

Back to top ↑

phong shading

Back to top ↑

일러스트

Back to top ↑

illustrate

Back to top ↑

Polygon

Back to top ↑

폴리곤

Back to top ↑

Face

Back to top ↑

Normal

Back to top ↑

primitives

Back to top ↑

diamond

Back to top ↑

barycentric coordinates

Back to top ↑

roughness map

Back to top ↑

textured mesh rendering (flat shading, phong shading, gouraud shading)

Back to top ↑

texture image

Back to top ↑

closest gaussian

Back to top ↑

compute density

Back to top ↑

triangle에 대한 gaussian density

Back to top ↑

TexturesVertex

Back to top ↑

surface reconstruction

Back to top ↑

pcd

Back to top ↑

gaussian surfels

Back to top ↑

vertex normal

Back to top ↑

RGB2SH

Back to top ↑

world coordinate system

Back to top ↑

push

Back to top ↑

pull

Back to top ↑

docker image

Back to top ↑

4dgs

Back to top ↑

4d gaussian splatting

Back to top ↑

monocular depth estimation

Back to top ↑

CUDA

Back to top ↑

cuda rasterization

Back to top ↑

pybind11

Back to top ↑

COLMAP 사용법

Back to top ↑

parallel imaging

[MR 연구] RAKI

7 minute read

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Back to top ↑

camera intrinsics

Back to top ↑

metric depth estimation (MDE)

Back to top ↑

relative depth estimation (RED)

Back to top ↑

Structure-from-Motion Revisited

Back to top ↑

CVPR

Back to top ↑

Delaunay triangulation

Back to top ↑

델로네 삼각분할

Back to top ↑

외접원

Back to top ↑

polygon mesh

Back to top ↑

reconstruction

Back to top ↑

깃허브 레퍼지토리

Back to top ↑

repeatability

Back to top ↑

FAST

Back to top ↑

HLoc

Back to top ↑

feature extractor

Back to top ↑

feature matcher

Back to top ↑

edge

[Registration] Edge, Corner 정의

less than 1 minute read

이미지에서 일반적으로 가장 중요하고 구분하기 쉬운 특징점들은 코너와 엣지입니다.

Back to top ↑

corner

[Registration] Edge, Corner 정의

less than 1 minute read

이미지에서 일반적으로 가장 중요하고 구분하기 쉬운 특징점들은 코너와 엣지입니다.

Back to top ↑

LIFT

Back to top ↑

interest points

Back to top ↑

homography estimation

Back to top ↑

matching 2D image correspondences

Back to top ↑

large-scale scene reconstruction

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

Back to top ↑

depth map inference

Back to top ↑

cost volume

Back to top ↑

depth hypotheses

Back to top ↑

Geometric constraints

Back to top ↑

happiness

Back to top ↑

fear

Back to top ↑

life advice

Back to top ↑

RANSAC

Back to top ↑

Homography

Back to top ↑

Local Features

Back to top ↑

Camera Intrinsics

Back to top ↑

pixels

Back to top ↑

manifolds

Back to top ↑

groups

Back to top ↑

transform_matrix

Back to top ↑

getWorld2View

Back to top ↑

getWorld2View2

Back to top ↑

avg_cam_center

Back to top ↑

radius

Back to top ↑

diagonal

Back to top ↑

batch matrix multiplication

Back to top ↑

bmm

Back to top ↑

transpose(0, 1)

Back to top ↑

row vector 연산

Back to top ↑

행벡터 연산

Back to top ↑

컴퓨터 그래픽스 계산 관례

Back to top ↑

column vector 연산

Back to top ↑

열벡터 연산

Back to top ↑

normal vector

Back to top ↑

surface

Back to top ↑

level set

Back to top ↑

Gaussians

Back to top ↑

Gaussian function

Back to top ↑

multivariate gaussian

Back to top ↑

Poisson Surface Reconstruction

Back to top ↑

Poisson reconstruction

Back to top ↑

Screened Poisson Surface Reconstruction

Back to top ↑

oriented point set

Back to top ↑

3d points

Back to top ↑

Octree

Back to top ↑

poisson depth

Back to top ↑

Mahalanobis distance

Back to top ↑

마할라노비스 거리

Back to top ↑

gaussian function

Back to top ↑

gaussian distribution

Back to top ↑

공분산

Back to top ↑

covariance

Back to top ↑

PSNR

Back to top ↑

SSIM

Back to top ↑

LPIPS

Back to top ↑

MSE

Back to top ↑

Metrics

Back to top ↑

Marching Cube

Back to top ↑

triplane

Back to top ↑

high resolution triplane feature vector

Back to top ↑

single shot generation

Back to top ↑

elevation

Back to top ↑

azimuth

Back to top ↑

SAM (Segment Anything Model)

Back to top ↑

Visibility Mask

Back to top ↑

Zero-1-2-3

Back to top ↑

initial gaussian points

Back to top ↑

4D Gaussian

Back to top ↑

LoRA

Back to top ↑

GAN

Back to top ↑

Generative Adversarial Network

Back to top ↑

mode collapse

Back to top ↑

Attention

Back to top ↑

Attention Pattern

Back to top ↑

Attention Mechanism

Back to top ↑

Transformer

Back to top ↑

GPT3

Back to top ↑

Language Model

Back to top ↑

3Blue1Brown

Back to top ↑

visually explaned

Back to top ↑

blender dataset

Back to top ↑

RGBA

Back to top ↑

big gaussians culling

Back to top ↑

view-space size culling

Back to top ↑

world-space size culling

Back to top ↑

3dgs bug

Back to top ↑

SIBR viewer

Back to top ↑

camera trajectory

Back to top ↑

visible frustum

Back to top ↑

add densification stats

Back to top ↑

batch rendering using gaussian rasterizer

Back to top ↑

densification

Back to top ↑

densification and pruning

Back to top ↑

densify_until_iter

Back to top ↑

float16, float 32

Back to top ↑

jacobian

Back to top ↑

large-scale scenes

Back to top ↑

number of points

Back to top ↑

opacity activation

Back to top ↑

ply

Back to top ↑

points contribute to pixels

Back to top ↑

positional gradient

Back to top ↑

scene_info

Back to top ↑

train_cameras

Back to top ↑

test_cameras

Back to top ↑

random shuffling

Back to top ↑

scaling_lr

Back to top ↑

position_lr

Back to top ↑

simple-knn

Back to top ↑

culling

Back to top ↑

sorting

Back to top ↑

tile ID

Back to top ↑

depth keys

Back to top ↑

vertex

Back to top ↑

Meshlab Vert

Back to top ↑

정점

Back to top ↑

human rendering

Back to top ↑

loss

Back to top ↑

render quality

Back to top ↑

real extent

Back to top ↑

move Gaussians

Back to top ↑

scene size

Back to top ↑

scene complexity

Back to top ↑

spatial learning rate

Back to top ↑

entropy loss

Back to top ↑

splatted

Back to top ↑

nearest gaussians

Back to top ↑

joint refinement

Back to top ↑

mesh extraction

Back to top ↑

coarse mesh extraction

Back to top ↑

SuGaR refinement

Back to top ↑

improve rendering result

Back to top ↑

monochrome

Back to top ↑

background

Back to top ↑

position_lr_init

Back to top ↑

sdf estimation

Back to top ↑

synthetic datasets

Back to top ↑

lego

Back to top ↑

video capture

Back to top ↑

custom dataset

Back to top ↑

border artifacts

Back to top ↑

seen area

Back to top ↑

unseen area

Back to top ↑

capture of an object

Back to top ↑

image resolution

Back to top ↑

rendering, composition and animation

Back to top ↑

implementation

Back to top ↑

refinement

Back to top ↑

360_v2

Back to top ↑

benchmark dataset

Back to top ↑

ffmpeg

Back to top ↑

sdf

Back to top ↑

regularization

Back to top ↑

adapt the scale of the scene

Back to top ↑

bounding box of the scene

Back to top ↑

hole in mesh

Back to top ↑

messy ellipsoidal bumps on the mesh surface

Back to top ↑

donut tutorial

Back to top ↑

mtl file

Back to top ↑

obj file

Back to top ↑

baking normal map

Back to top ↑

shadowmap

Back to top ↑

lightmap

Back to top ↑

Ambient Occlusion

Back to top ↑

Render Engine (Cycles, EEVEE)

Back to top ↑

flat shading

Back to top ↑

texture paint

Back to top ↑

wireframe mode

Back to top ↑

Toggle X-Ray

Back to top ↑

inkscape

Back to top ↑

svg file

Back to top ↑

vector image

Back to top ↑

벡터 이미지

Back to top ↑

벡터 파일

Back to top ↑

일러스트레이트

Back to top ↑

그림 그리기

Back to top ↑

제안서

Back to top ↑

Surface Normal

Back to top ↑

Face Normal

Back to top ↑

Flat Shading

Back to top ↑

Smooth Shading

Back to top ↑

Gouraud Shading

Back to top ↑

point

Back to top ↑

line

Back to top ↑

quad

Back to top ↑

polygon

Back to top ↑

square (quad)

Back to top ↑

surface mesh

Back to top ↑

binding

Back to top ↑

바인딩

Back to top ↑

n_gaussians_per_surface_triangle

Back to top ↑

무게중심

Back to top ↑

3D modeling

Back to top ↑

UV map

Back to top ↑

texture map

Back to top ↑

PBR materials

Back to top ↑

albedo map

Back to top ↑

specular map

Back to top ↑

displacement map

Back to top ↑

ambient occlusion map

Back to top ↑

metalness map

Back to top ↑

extract_texture_image_and_uv_from_gaussians

Back to top ↑

무게중심 좌표

Back to top ↑

Chamfer distance

Back to top ↑

barycentric coordiantes

Back to top ↑

barycentric interpolation

Back to top ↑

n_vertices_per_gaussian

Back to top ↑

TexturesUV

Back to top ↑

mesh texturing

Back to top ↑

multi-view

Back to top ↑

depth maps

Back to top ↑

normal maps

Back to top ↑

screened Poisson Reconstruction

Back to top ↑

Gaussian Surfels

Back to top ↑

load_obj

Back to top ↑

sdf (signed distance function)

Back to top ↑

eikonal equation

Back to top ↑

아이코널 방정식

Back to top ↑

ray tracing

Back to top ↑

fg_pcd

Back to top ↑

bg_pcd

Back to top ↑

monocular norm priors

Back to top ↑

specular reflections

Back to top ↑

sharp surface edges

Back to top ↑

alpha blending process

Back to top ↑

texture maps

Back to top ↑

texture bake

Back to top ↑

create procedural material

Back to top ↑

procedural material

Back to top ↑

diffuse map

Back to top ↑

metallic

Back to top ↑

vertex shading

Back to top ↑

fragment shading

Back to top ↑

model space

Back to top ↑

wordl space

Back to top ↑

camera space

Back to top ↑

view screen

Back to top ↑

visibility z buffer depth buffer

Back to top ↑

vertices

Back to top ↑

baycentric coordinates

Back to top ↑

bind new gaussian

Back to top ↑

triangle primitives

Back to top ↑

tiny primitives

Back to top ↑

marching cubes

Back to top ↑

hole and artifacts

Back to top ↑

monocular normal priors

Back to top ↑

foreground masks

Back to top ↑

screened Poisson reconstruction

Back to top ↑

shape-radiance ambiguity

Back to top ↑

3D ellipsoid into a 2D ellipse

Back to top ↑

self-supervised normal-depth consistency loss

Back to top ↑

affine transform

Back to top ↑

sh

Back to top ↑

SH2RGB

Back to top ↑

colors

Back to top ↑

sh_coordinates

Back to top ↑

surface_mesh_to_bind

Back to top ↑

o3d mesh

Back to top ↑

open3d mesh

Back to top ↑

n_points

Back to top ↑

n_gaussians

Back to top ↑

len(tensor)

Back to top ↑

faces_uv

Back to top ↑

verts_coords

Back to top ↑

verts_uv

Back to top ↑

texture_img

Back to top ↑

offset

Back to top ↑

inverse kinematics

Back to top ↑

ik

Back to top ↑

forward kinematics

Back to top ↑

fk

Back to top ↑

skinning

Back to top ↑

human mesh

Back to top ↑

subsurface scattering

Back to top ↑

Relightable Gaussian Codec Avatars

Back to top ↑

vertex groups

Back to top ↑

weights

Back to top ↑

weight painting

Back to top ↑

armature

Back to top ↑

build_covariance

Back to top ↑

scaling

Back to top ↑

scaling_modifier

Back to top ↑

rotation

Back to top ↑

3dgs initialization

Back to top ↑

simple knn

Back to top ↑

최근접 알고리즘

Back to top ↑

distCUDA2

Back to top ↑

scale

Back to top ↑

fused color

Back to top ↑

features

Back to top ↑

features_dc

Back to top ↑

features_rest

Back to top ↑

self.optimizer.param_groups

Back to top ↑

cat_tensors_to_optimizer

Back to top ↑

camera_angle_x

Back to top ↑

fovx

Back to top ↑

fovy

Back to top ↑

camera coordinate system

Back to top ↑

ccs

Back to top ↑

wcs

Back to top ↑

viewing direction d

Back to top ↑

viewing dir

Back to top ↑

add_densification_stats

Back to top ↑

self.xyz_gradient_accum

Back to top ↑

viewspace_point_tensor

Back to top ↑

update_filter

Back to top ↑

denom

Back to top ↑

sh degree

Back to top ↑

oneupSHdegree

Back to top ↑

HDR plenoxel

Back to top ↑

hash grid

Back to top ↑

multi resolution

Back to top ↑

Deblurring 3d gaussian splatting

Back to top ↑

dynamics 3d gaussian splatting

Back to top ↑

HexPlane

Back to top ↑

KPlanes

Back to top ↑

D-NeRF

Back to top ↑

Dynamic NeRF

Back to top ↑

TiNeu Vox

Back to top ↑

dynamic 3d gaussian splatting

Back to top ↑

dynamic 3dgs

Back to top ↑

depth estimation

Back to top ↑

scene representation

Back to top ↑

scene understanding

Back to top ↑

requirements.txt

[Git] pip install -r requirements.txt

1 minute read

requirements.txt를 설치할 때, 미리 설치한 torch가 uninstall되버리고 다른 버전의 torch로 설치되는 문제 해결법

Back to top ↑

pip install -r requirements.txt

[Git] pip install -r requirements.txt

1 minute read

requirements.txt를 설치할 때, 미리 설치한 torch가 uninstall되버리고 다른 버전의 torch로 설치되는 문제 해결법

Back to top ↑

torch

[Git] pip install -r requirements.txt

1 minute read

requirements.txt를 설치할 때, 미리 설치한 torch가 uninstall되버리고 다른 버전의 torch로 설치되는 문제 해결법

Back to top ↑

torch version

[Git] pip install -r requirements.txt

1 minute read

requirements.txt를 설치할 때, 미리 설치한 torch가 uninstall되버리고 다른 버전의 torch로 설치되는 문제 해결법

Back to top ↑

pytorch

[Git] pip install -r requirements.txt

1 minute read

requirements.txt를 설치할 때, 미리 설치한 torch가 uninstall되버리고 다른 버전의 torch로 설치되는 문제 해결법

Back to top ↑

pytorch lightning

[Git] pip install -r requirements.txt

1 minute read

requirements.txt를 설치할 때, 미리 설치한 torch가 uninstall되버리고 다른 버전의 torch로 설치되는 문제 해결법

Back to top ↑

Nomral

Back to top ↑

scaling axis

Back to top ↑

diff-gaussian-rasterization-depth-acc

Back to top ↑

gaussian rasterizer

Back to top ↑

forward.cu

Back to top ↑

backward.cu

Back to top ↑

3DCV

Back to top ↑

gaussian sorting

Back to top ↑

gaussian points for each pixel

Back to top ↑

cuda tutorial 1

Back to top ↑

cuda tutorial 2

Back to top ↑

extra_compile_args

Back to top ↑

cuda tutorial 3

Back to top ↑

cuda tutorial 4

Back to top ↑

__global__

Back to top ↑

__device__

Back to top ↑

__host__

Back to top ↑

cuda tutorial 5

Back to top ↑

cuda tutorial 6

Back to top ↑

cuda tutorial

Back to top ↑

CT projection

Back to top ↑

TIGRE

Back to top ↑

SAX-NeRF

Back to top ↑

MR image domain

Back to top ↑

MR k-space domain

Back to top ↑

k-space center

Back to top ↑

MR dataset

Back to top ↑

llffhold

Back to top ↑

colmap data

Back to top ↑

readColmapSceneInfo

Back to top ↑

3dgs eval

Back to top ↑

dataset_readers.py

Back to top ↑

3DGS colmap data

Back to top ↑

MRI

Back to top ↑

GRAPPA

Back to top ↑

SENSE

Back to top ↑

ESPIRiT

Back to top ↑

autocalibration

Back to top ↑

eigenvalue

Back to top ↑

null space

Back to top ↑

scan specific

[MR 연구] RAKI

7 minute read

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Back to top ↑

patient specific

[MR 연구] RAKI

7 minute read

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Back to top ↑

SENSE (sensitivity encoding)

[MR 연구] RAKI

7 minute read

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Back to top ↑

GRAPPA (generalized autocalibrating partially parallel acquisition

[MR 연구] RAKI

7 minute read

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Back to top ↑

SPIRiT

[MR 연구] RAKI

7 minute read

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Back to top ↑

sparse view

Back to top ↑

camera pose

Back to top ↑

fewshot

Back to top ↑

few views

Back to top ↑

few-input setting

Back to top ↑

SfM point clouds

Back to top ↑

disparity map

Back to top ↑

depth budget

Back to top ↑

disparity range

Back to top ↑

positive disparity

Back to top ↑

negative disparity

Back to top ↑

stereo matching

Back to top ↑

single-image depth estimation

Back to top ↑

global disparity shift

Back to top ↑

scale invariance

Back to top ↑

shift invariance

Back to top ↑

disparity space

Back to top ↑

reprojection

Back to top ↑

backprojection

Back to top ↑

metric depth

Back to top ↑

depth map reprojection

Back to top ↑

homogeneous coordinate

Back to top ↑

point clouds

Back to top ↑

Dense Matching

Back to top ↑

PDC-Net

Back to top ↑

correspondence

Back to top ↑

subprocess-exited-with-error

Back to top ↑

diff-gaussian-rasterization-depth

Back to top ↑

end of output

Back to top ↑

This error originates from a subprocess, and is likely not a problem with pip

Back to top ↑

pip install -e .

Back to top ↑

pip install --no-build-isolation -e .

Back to top ↑

.cu 설치

Back to top ↑

이미지 퍼즐

Back to top ↑

이미지 직쏘퍼즐

Back to top ↑

jigsaw puzzle

Back to top ↑

viewmatrix

Back to top ↑

poses_avg

Back to top ↑

recenter_poses

Back to top ↑

poses_bounds.npy

Back to top ↑

generate_spiral_path

Back to top ↑

generate_ellipse_path

Back to top ↑

focus_pt_fn

Back to top ↑

Rodrigues' rotation

Back to top ↑

angular velocity

Back to top ↑

linear velocity

Back to top ↑

axis-angle representation

Back to top ↑

SO(3)

Back to top ↑

so(3)

Back to top ↑

SE(3)

Back to top ↑

se(3)

Back to top ↑

Nearest Neighbors

Back to top ↑

KNN

Back to top ↑

Brute force

Back to top ↑

KD Tree

Back to top ↑

Ball Tre

Back to top ↑

표면 메시(surface mesh)

Back to top ↑

3D Delaunay triangulation

Back to top ↑

사면체(tetrahedra)

Back to top ↑

Barycentric coordinates

Back to top ↑

mesh deformation

Back to top ↑

Thin Plate Splines

Back to top ↑

Deformation

Back to top ↑

control points

Back to top ↑

source points

Back to top ↑

target points

Back to top ↑

container

Back to top ↑

attach to VScode

Back to top ↑

docker group

Back to top ↑

DSBSCAN clustering

Back to top ↑

Density based clustering

Back to top ↑

밀도 기반 클러스터링

Back to top ↑

monodepth

Back to top ↑

COLMAP coordinate

Back to top ↑

Depth Anything

Back to top ↑

DPT

Back to top ↑

mono depth estimation

Back to top ↑

scene.cameras_extent

Back to top ↑

COLMAP unit

Back to top ↑

COLMAP depth unit

Back to top ↑

real-world scales

Back to top ↑

docker contrainer

Back to top ↑

도커 컨테이너

Back to top ↑

conda

Back to top ↑

conda env

Back to top ↑

environment.yml

Back to top ↑

conda env create --file environment.yml

Back to top ↑

무한로딩

Back to top ↑

git clone

Back to top ↑

VSCode

Back to top ↑

CursorAI

Back to top ↑

Extension

Back to top ↑

Prettier

Back to top ↑

git merge

Back to top ↑

git init

Back to top ↑

git commit

Back to top ↑

git push

Back to top ↑

git pull

Back to top ↑

github group project

Back to top ↑

branch

Back to top ↑

develop branch

Back to top ↑

깃허브 그룹 프로젝트

Back to top ↑

global registration

Back to top ↑

local registration

Back to top ↑

Iterative Closest Point (ICP)

Back to top ↑

repeatable keypoints

Back to top ↑

putative correspondences

Back to top ↑

keypoint-free method

Back to top ↑

Geotransformer

Back to top ↑

descripotr matching

Back to top ↑

Harris corner detection

Back to top ↑

image substructures

Back to top ↑

interest point detection

Back to top ↑

descriptor learning

Back to top ↑

MagicPoint

Back to top ↑

large-scale 3D scene reconstruction

Back to top ↑

rigid point cloud registration

Back to top ↑

BRIEF

Back to top ↑

ORB

Back to top ↑

Tilde

Back to top ↑

KPConv

Back to top ↑

3D filters

Back to top ↑

Kabsch-Umeyama algorithm

Back to top ↑

evaluation metric

Back to top ↑

RRE

Back to top ↑

RTE

Back to top ↑

RSE

Back to top ↑

RDE

Back to top ↑

RR(Success Ratio)

Back to top ↑

ATE

Back to top ↑

global feature-extracing strategy

Back to top ↑

Predator

Back to top ↑

REGTR

Back to top ↑

self-attention

Back to top ↑

cross-attention

Back to top ↑

3D reconstruction

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

Back to top ↑

bundle adjustment

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

Back to top ↑

triangulate across images

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

Back to top ↑

sparse 3D point cloud

[Registration] 3D reconstruction process

1 minute read

3D reconstruction pipeline: Extract 2D features, matche features across different images, jointly optimize a set of 3D points and camera poses to be consiste...

Back to top ↑

city scale

Back to top ↑

transient objects

Back to top ↑

a single capture

Back to top ↑

variance in both scene geometry and appearance

Back to top ↑

probability volume

Back to top ↑

per-pixel depth estimation

Back to top ↑

estimation confidence

Back to top ↑

MVSNet

Back to top ↑

depth hypothesis

Back to top ↑

disparity channels

Back to top ↑

predicted disparity

Back to top ↑

Monodepth1

Back to top ↑

M3Depth

Back to top ↑

image warping

Back to top ↑

Iterative Closest Point (ICP) for 3D Consistency loss

Back to top ↑

SurgicalGS

Back to top ↑

EndoGaussian

Back to top ↑

Deform3dgs

Back to top ↑

RAFT

Back to top ↑

endoscopic scene reconstruction

Back to top ↑

deform3dgs

Back to top ↑

stereo depth

Back to top ↑

StereoMIS

Back to top ↑

EndoNeRF

Back to top ↑

GeoGaussian

Back to top ↑

co-planar constraint

Back to top ↑

equirectangular projection

Back to top ↑

360 degree scene reconstruction

Back to top ↑

panoramic inputs

Back to top ↑

sparse-view inputs

Back to top ↑

room layout

Back to top ↑

panoramic room layout estimation

Back to top ↑

layout-guided point cloud

Back to top ↑

layout point cloud

Back to top ↑

depth point cloud

Back to top ↑

4D

Back to top ↑

4DGS

Back to top ↑

4D Gaussian Splatting

Back to top ↑

D-NeRF Dataset

Back to top ↑

Hypernerf Dataset

Back to top ↑

Plenoptic Dataset

Back to top ↑