[Registration] global feature-extracting strategy
Reference
CL-NeRF: Continual Learning of Neural Radiance Fields for Evolving Scene Representation
-
NeRF2NeRF [14] utilizes human-annotated key points to obtain an initial transformation and refines it using a surface field distilled from a pre-trained NeRF.
- DReg-NeRF [6] extracts features from the occupancy grid of NeRF and applies a decoupling model [38] for NeRF registration, eliminating the need for human interaction in the registration process. However, itโs hard to generalize to larger scenes due to its global feature-extracting strategy.
- DReg-NeRF๋ occupancy grid์์ ํน์ง์ ์ถ์ถํ์ฌ ์ฅ๋ฉด ๊ฐ์ ์ ํฉ(registration)์ ์ํํฉ๋๋ค. ์ด ๊ณผ์ ์์:
- ์ฅ๋ฉด ์ ์ฒด์ ํน์ง์ ํ ๋ฒ์ ์ฒ๋ฆฌํ๋ ค๋ ๊ฒฝํฅ(global approach)์ด ์์ต๋๋ค.
- ์ด๋ ์ฅ๋ฉด ํฌ๊ธฐ๊ฐ ํด์๋ก ๊ณ์ฐ ๋น์ฉ์ด ์ฆ๊ฐํ๊ณ , ๋ณต์กํ ์ฅ๋ฉด์์ ๊ตญ์์ ์ธ ์ธ๋ถ ์ ๋ณด๋ฅผ ๋์น ๊ฐ๋ฅ์ฑ์ด ์์ต๋๋ค.
- ๊ธ๋ก๋ฒ ์ ๊ทผ๋ฒ์ ์ ์ญ์ ์ธ ์์ฝ ์ ๋ณด๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ๋ฏ๋ก, ์ฅ๋ฉด์ด ์ปค์ง์๋ก ์ธ๋ฐํ ๊ตญ์์ ๋ถ์ผ์น(local mismatch)๋ฅผ ํฌ์ฐฉํ๋ ๋ฐ ํ๊ณ๊ฐ ์๊ธธ ์ ์์ต๋๋ค.
- DReg-NeRF๋ occupancy grid์์ ํน์ง์ ์ถ์ถํ์ฌ ์ฅ๋ฉด ๊ฐ์ ์ ํฉ(registration)์ ์ํํฉ๋๋ค. ์ด ๊ณผ์ ์์:
-
NeRFuser [10] directly uses the structure from motion method to estimate the transformation using rendered images from NeRF which is very time-consuming.
- CL-NeRF [36] concentrates on the continual learning of NeRF models and proposes an expert adaptor for learning newly changed scenes without finetuning the whole network.
Leave a comment