1 minute read

Reference

GaussReg: Fast 3D Registration with Gaussian Splatting

nerf2nerf: Pairwise Registration of Neural Radiance Fields

DReg-NeRF: Deep Registration for Neural Radiance Fields

NeRFuser: Large-Scale Scene Representation by NeRF Fusion

CL-NeRF: Continual Learning of Neural Radiance Fields for Evolving Scene Representation

  • NeRF2NeRF [14] utilizes human-annotated key points to obtain an initial transformation and refines it using a surface field distilled from a pre-trained NeRF.

  • DReg-NeRF [6] extracts features from the occupancy grid of NeRF and applies a decoupling model [38] for NeRF registration, eliminating the need for human interaction in the registration process. However, itโ€™s hard to generalize to larger scenes due to its global feature-extracting strategy.
    • DReg-NeRF๋Š” occupancy grid์—์„œ ํŠน์ง•์„ ์ถ”์ถœํ•˜์—ฌ ์žฅ๋ฉด ๊ฐ„์˜ ์ •ํ•ฉ(registration)์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ:
      • ์žฅ๋ฉด ์ „์ฒด์˜ ํŠน์ง•์„ ํ•œ ๋ฒˆ์— ์ฒ˜๋ฆฌํ•˜๋ ค๋Š” ๊ฒฝํ–ฅ(global approach)์ด ์žˆ์Šต๋‹ˆ๋‹ค.
      • ์ด๋Š” ์žฅ๋ฉด ํฌ๊ธฐ๊ฐ€ ํด์ˆ˜๋ก ๊ณ„์‚ฐ ๋น„์šฉ์ด ์ฆ๊ฐ€ํ•˜๊ณ , ๋ณต์žกํ•œ ์žฅ๋ฉด์—์„œ ๊ตญ์†Œ์ ์ธ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ๋†“์น  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
      • ๊ธ€๋กœ๋ฒŒ ์ ‘๊ทผ๋ฒ•์€ ์ „์—ญ์ ์ธ ์š”์•ฝ ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฏ€๋กœ, ์žฅ๋ฉด์ด ์ปค์งˆ์ˆ˜๋ก ์„ธ๋ฐ€ํ•œ ๊ตญ์†Œ์  ๋ถˆ์ผ์น˜(local mismatch)๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์ƒ๊ธธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • NeRFuser [10] directly uses the structure from motion method to estimate the transformation using rendered images from NeRF which is very time-consuming.

  • CL-NeRF [36] concentrates on the continual learning of NeRF models and proposes an expert adaptor for learning newly changed scenes without finetuning the whole network.

Leave a comment