[3D CV 연구] 3DGS build_covariance_from_scaling_rotation
3D Gaussian을 표현하는 covariance matrix를 scaling & rotation으로 만들어줍니다.
$RS = L$, $S^TR^T=(RS)^T=L^T$ 이므로 $RSS^TR^T=LL^T$이고 코드에서 actual_covariance는 $RSS^TR^T$에 해당합니다.
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
actual_covariance = L @ L.transpose(1, 2)
# 3dgs/scene/gaussian_model.py
from utils.general_utils import strip_symmetric, build_scaling_rotation
class GaussianModel:
def setup_functions(self):
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
actual_covariance = L @ L.transpose(1, 2)
symm = strip_symmetric(actual_covariance)
return symm
self.scaling_activation = torch.exp
self.scaling_inverse_activation = torch.log
self.covariance_activation = build_covariance_from_scaling_rotation
self.opacity_activation = torch.sigmoid
self.inverse_opacity_activation = inverse_sigmoid
self.rotation_activation = torch.nn.functional.normalize
# utils/general_utils
def build_scaling_rotation(s, r):
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
R = build_rotation(r)
L[:,0,0] = s[:,0]
L[:,1,1] = s[:,1]
L[:,2,2] = s[:,2]
L = R @ L
return L
build_rotation(r)
에서r
에 해당하는 것은self._rotation # shape (n_points, 4)
인 quaternion입니다.# utils/general_utils def build_rotation(r): norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3]) q = r / norm[:, None] R = torch.zeros((q.size(0), 3, 3), device='cuda') r = q[:, 0] x = q[:, 1] y = q[:, 2] z = q[:, 3] R[:, 0, 0] = 1 - 2 * (y*y + z*z) R[:, 0, 1] = 2 * (x*y - r*z) R[:, 0, 2] = 2 * (x*z + r*y) R[:, 1, 0] = 2 * (x*y + r*z) R[:, 1, 1] = 1 - 2 * (x*x + z*z) R[:, 1, 2] = 2 * (y*z - r*x) R[:, 2, 0] = 2 * (x*z - r*y) R[:, 2, 1] = 2 * (y*z + r*x) R[:, 2, 2] = 1 - 2 * (x*x + y*y) return R
- 이때 quaternion에 해당하는
r
은 모든 points에 대해 회전성분이 없는 [1,0,0,0]로 초기화 됩니다.- 아래에서
rots
는 n_points 수인fused_point_cloud.shape[0]
와 quaternion을 구성하는 4개의 성분으로 정의하고 모든 points에 대해 [1,0,0,0]로 초기화합니다. rots # shape (n_points, 4)
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float): self.spatial_lr_scale = spatial_lr_scale fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() features[:, :3, 0 ] = fused_color features[:, 3:, 1:] = 0.0 print("Number of points at initialisation : ", fused_point_cloud.shape[0]) dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001) scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3) rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") rots[:, 0] = 1 opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) self._scaling = nn.Parameter(scales.requires_grad_(True)) self._rotation = nn.Parameter(rots.requires_grad_(True)) self._opacity = nn.Parameter(opacities.requires_grad_(True)) self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
- 아래에서
- 혹은 학습후
output.ply
에서 quaternion인rots
를 불러오면 다음과 같은 형태입니다.rots # shape (n_points, 4)
-
rot_names
: -
rot_0
,rot_1
,rot_2
,rot_3
:
# utils/general_utils.py
def strip_lowerdiag(L):
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")
uncertainty[:, 0] = L[:, 0, 0]
uncertainty[:, 1] = L[:, 0, 1]
uncertainty[:, 2] = L[:, 0, 2]
uncertainty[:, 3] = L[:, 1, 1]
uncertainty[:, 4] = L[:, 1, 2]
uncertainty[:, 5] = L[:, 2, 2]
return uncertainty
def strip_symmetric(sym):
return strip_lowerdiag(sym)
Leave a comment